Multi-Layer Ceramic Fuel Cells BAA

"Low-Cost Manufacturing of Multi-Layer Ceramic Fuel Cells"

Performer:

NexTech Materials, Ltd.

Worthington, OH

Contract: DE-AC26-00NT40706

PI: Mr. William Dawson

Funding: \$1.44M DOE

+ \$0.42M Contractor Share

= \$1.86M

<u>Sub-Contractors</u>: University of Missouri-Rolla, ORNL, Northwestern University, Edison Materials Technology Center, Michael Cobb & Associates, Adaptive Materials Inc., U.S. Air Force, Ohio State University, Institute of Gas Technology, Iowa State University, Advanced materials Technologies

Image Courtesy of NexTech Materials Ltd.

NexTech Project Description

- Develop multi-layer ceramics manufacturing processes similar to computer board and chip making
- Cost Study & Evaluation
- Small-scale development of manufacturing processes
- Non-destructive & Destructive evaluation Techniques
- Limited single stack testing
- Scale-up & Demonstrate Automated Manufacturing

NexTech Project Objectives & Milestones

- Producible SOFC designs with high power density and low cost
 - 1-2 kilowatts/liter and \$100-125 per kilowatt
- Advance Destructive and Non-Destructive Evaluation Techniques
- Develop multi-layer ceramics manufacturing processes for fuel cells
 - Co-sintering of planar electrolyte elements
 - Spin-coating of ultra-thin film electrolytes

		2000			2001				2002		
Phase	Task	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
I	Prelim. Design for Manufacture Analysis							_			_
II	Co-Sintering of Planar Electrode-Supported Elements Spin-Coating of Ultra-Thin Electrolytes										
III	Test of Co-Sintered Electrode-Supported Elements Test of Spin-Coated Ultra-Thin Electrolytes Business Plan							-			

NexTech Significant Accomplishments

- Identified Multiple Approaches & Development Paths
 - Cost & risk analysis on 5 planar concepts
 - Project \$90 to \$160/kW stack cost

Developed Numerous <u>Baseline</u> Process Modifications

- Tape casting of porous LSM (cathode) and NiO/YSZ (anode) substrates with controlled porosity and sintering shrinkage
- Improved substrate flatness to ≤20 μm w/ optical profilemetry
- Screen printing processes for anode and cathode coatings
- Dense and leak-tight YSZ electrolyte films
 - on LSM cathode substrates by spray-deposition and co-sintering
 - on NiO/YSZ anode substrates by screen printing and co-sintering
- Increased process yield of nanoscale YSZ suspensions and achieved high solids content YSZ suspensions with particle size < 100 nm
- Repeatable processes for continuous, crack-free PSMF/GDC
 cathode interlayer films, and ceria anode interlayer films

Image Courtesy of NexTech Materials Ltd.

NexTech Significant Accomplishments (cont)

• Numerous <u>Alternative</u> Process Modifications

- Several tape casting methods for porous LSM cathode substrates
- Colloidal method for planarizing LSM surface with nanoporous ceria coating to allow spin-coating of defect-free YSZ electrolyte films
- Fabrication of dense, nano-crystalline YSZ films (2 μ m thick) on porous LSM substrates w/ ceria-based interlayer
- Increased conductivity of nano-porous ceria planarization layer by compositional modifications
- Identified potential anode interlayer materials with extremely high electronic conductivity at low pO₂
- Highly effective collaboration of large diverse team
- Now supplying new materials to SOFC developers and manufacturers

Image Courtesy of NexTech Materials Ltd.

